在贪婪算法(greedy method)中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪婪决策的依据称为贪婪准则(greedy criterion)。
例1-4 [找零钱] 一个小孩买了价值少于1美元的糖,并将1美元的钱交给售货员。售货员希望用数目最少的硬币找给小孩。假设提供了数目不限的面值为2 5美分、1 0美分、5美分、及1美分的硬币。售货员分步骤组成要找的零钱数,每次加入一个硬币。选择硬币时所采用的贪婪准则如下:每一次选择应使零钱数尽量增大。为保证解法的可行性(即:所给的零钱等于要找的零钱数),所选择的硬币不应使零钱总数超过最终所需的数目。
假设需要找给小孩6 7美分,首先入选的是两枚2 5美分的硬币,第三枚入选的不能是2 5美分的硬币,否则硬币的选择将不可行(零钱总数超过6 7美分),第三枚应选择1 0美分的硬币,然后是5美分的,最后加入两个1美分的硬币。
贪婪算法有种直觉的倾向,在找零钱时,直觉告诉我们应使找出的硬币数目最少(至少是接近最少的数目)。可以证明采用上述贪婪算法找零钱时所用的硬币数目的确最少(见练习1)。
例1-5 [机器调度] 现有n 件任务和无限多台的机器,任务可以在机器上得到处理。每件任务的开始时间为si,完成时间为fi ,si < fi 。[si , fi ] 为处理任务i 的时间范围。两个任务i,j 重指两个任务的时间范围区间有重叠,而并非是指i,j 的起点或终点重合。例如:区间[ 1,4 ]与区间[ 2,4 ]重叠,而与区间[ 4,7 ]不重叠。一个可行的任务分配是指在分配中没有两件重叠的任务分配给同一台机器。因此,在可行的分配中每台机器在任何时刻最多只处理一个任务。最优分配是指使用的机器最少的可行分配方案。
版权与免责声明
1、本站所发布的文章仅供技术交流参考,本站不主张将其做为决策的依据,浏览者可自愿选择采信与否,本站不对因采信这些信息所产生的任何问题负责。
2、本站部分文章来源于网络,其版权为原权利人所有。由于来源之故,有的文章未能获得作者姓名,署“未知”或“佚名”。对于这些文章,有知悉作者姓名的请告知本站,以便及时署名。如果作者要求删除,我们将予以删除。除此之外本站不再承担其它责任。
3、本站部分文章来源于本站原创,本站拥有所有权利。
4、如对本站发布的信息有异议,请联系我们,经本站确认后,将在三个工作日内做出修改或删除处理。
请参阅权责声明!