SMSBR反应器去除焦化废水中的氨氮

  来源:网络    时间:     
[关键词]环境工程  

    摘要:采用浸没式膜生物反应器(SMSBR)处理焦化废水的试验结果表明:膜的截留作用可使硝化菌在反应器内富集而有利于提高系统的硝化能力,其去除氨氮的最高负荷为0.19kg/(m3·d),出水氨氮<1mg/L(去除率为99%);泥龄长可能使微生物的代谢产物或其他大分子物质积累,从而抑制硝酸盐细菌的活性,导致NO2-积累而有利于短程脱氮的进行,但泥龄过长也会影响亚硝酸盐细菌的活性,从而影响对氨氮的处理效果。整个系统的硝化效果主要受温度、pH值、DO、冲击负荷等因素的影响。
关键词:SMSBR 焦化废水 硝化 NO2-积累 短程脱氮  Use of SMSBR for Removal of Ammonia Nitrogen from Coke Wastewater
  Abstract:A submerged membrane sequencing batch bioreactor was used to treat coke wastewater.Long running performance showed that due to the membrane interception,the nitrobacter is enriched in reactor in the interest of improving the nitrification rate;the maximum ammonia nitrogen loading can be 0.19 kg/(m3·d) with effluent ammonia nitrogen<1 mg/L (removal rate 99%).Long sludge retention time may result in the accumulation of metabolic products and high molecular materials,and thus inhibiting activity of nitrate bacteria (nitrobacter) and causing a ccumulation of NO2-,which is beneficial to the running of short-cut denitrif ication.However,too long retention time will affect the activity of nitrite bacteria (nitrosomonas),detrimental to the treatment effect of ammonia nitrogen.The nitrification effect in the whole system is mainly influenced by temperature,pH, DO,and shock loading.
  Keywords:SMSBR; coke wastewater; nitrification; NO2-accumulation; short-cut denitrification  焦化废水含氮量高且含有大量有毒和难降解物质,若采用传统生物处理工艺不但流程较长,处理效果也较难达到要求,而膜生物反应器通过膜分离强化了生物处理效果,克服了传统工艺的弊端[1]。[HJ]由于膜的截留作用使微生物不会随出水流失,同时大分子难降解物质和微生物的代谢产物也被保留在反应器内,其中有些物质可能对微生物的生理活动产生一定影响,使得膜生物反应器在去除氨氮的过程中具有不同于普通活性污泥法的特点。1 试验材料和方法1.1 装置及材料
  膜生物反应器装置如图1所示。反应器容积为15L,膜组件采用PVDF中空纤维微滤膜,孔径为0.15μm,膜面积为0.22m2。1.2 运行条件
  生物反应器的运行分为两阶段:第一阶段(1999年9月27日—2000年8月1日)按缺氧—好氧方式运行,周期为24h,其中缺氧进水为6h、曝气反应为15h、膜排水为2h(排水量为11L)、闲置为1h;第二阶段(2000年8月2日—2000年9月23日)按缺氧—好氧方式运行(9月2日—9月23日排水量减为8L),周期仍为24h,即缺氧进水为3.5h、曝气为15h、缺氧搅拌为3.5h、曝气排水为2h(或缺氧进水为3h、曝气为15h、缺氧搅拌为4.5h、曝气排水为1.5h)。
  出水由蠕动泵经膜排出,蠕动泵每抽吸10min则间歇5min,通过膜组件下部曝气产生的水流剪切作用同时辅以膜组件的垂直运动来控制由于膜污染引起的通量衰减。试验期间基本没有排泥,污泥增长缓慢,经核算泥龄为600d。
1.3 原水水质
  原水为上海焦化厂初沉池出水,其氨氮含量为61.5~270mg/L。
1.4 分析方法
  COD:快速法;氨氮:滴定法;NO3-N:紫外分光光度法;NO2-N:α萘胺光度法。2 结果与分析2.1 污泥培养及反应器启动
  1999年8月19日取宝钢焦化厂的回流污泥(MLSS=3338mg/L)作为接种污泥,在18L的容器中进行驯化。驯化期内按SBR工艺运行(进水为6h、曝气为16h、沉淀排水为2h、排水量为8L)。将上海焦化厂调节池出水用自来水按1∶1稀释(COD约为570mg/L)作为进水,4d后稀释比例变为3∶1(COD约为780mg/L),再经4d后变为9∶1,到8月30日直接用原水(COD约为1150mg/L)作为进水。9月26日将污泥经沉淀浓缩后移入15L的反应器,同时开始用膜排水(排水量变为11L)。
2.2 系统的硝化效果
  运行初期在保证一定温度、pH值、DO的条件下,进水氨氮<240mg/L时的出水氨氮均为5mg/L以下,达到了很好的氨氮去除效果。春季硝化启动后系统进、出水氨氮的变化见图2,相应的污泥负荷与污泥浓度的变化见图3。  由于采用了膜生物反应器,系统的硝化具有以下几方面的特点:
  ① 强化了对氨氮的去除
  运行初期微生物代谢产物的积累比较少,微生物的活性尚未受到影响,此时系统具有较高的处理效率,以氨氮去除计算的容积负荷最高可达0.19kg/(m3·d),而出水氨氮<1mg/L,对氨氮的去除率为99.9%;若采用A/A/O工艺处理水质相似的废水,当进水氨氮负荷<0.1kg/(m3·d)时才能保证出水氨氮<10mg/L,而氨氮负荷>0.18kg/(m3d)时,出水氨氮>40mg/L,去除率降至50%以下。
  采用膜生物反应器可以取得很好的氨氮去除效果的原因在于:在反应器内保持了较高的污泥浓度,降低了F/M值,减弱了异养菌对DO的竞争,有利于硝化反应的进行;反应器内微生物絮体较活性污泥法的细碎,污泥呈分散生长,有利于氧的传质;膜的截留作用使微生物不会随出水流失,硝化菌得以在反应器内富集成为优势菌种,使氨氮的转化更为彻底。
  ② 短程脱氮
  反应器运行初期未受温度影响时,进水氨氮基本转化为NO3-N而无NO2-N的积累。经过冬季运行后硝化作用完全受到抑制,次年5月温度回升至23℃后硝化作用迅速启动,出水氨氮在5d内降至1mg/L以下,其主要转化产物为NO2-N,而NO3-N的浓度一直保持在较低水平(大部分时间在10mg/L以下)。各个时期硝化效果的比较见表1。表1 硝化效果的对比项 目2.3 影响硝化效果的因素
  ① 冲击负荷
  由图2、3可知,当进水氨氮浓度突然升高时,系统对氨氮的去除效果明显下降,污泥负荷甚至出现负值(这是因为异养菌受冲击负荷影响比硝化菌小,进水中的有机氮继续被异养菌转化为氨氮,从而使出水氨氮高于进水),需要经过一段时间(5d以上)才能恢复。
  系统耐冲击负荷的能力较差与泥龄过长有关。膜生物反应器内微生物多数呈分散生长,比传统活性污泥法中污泥絮体内集中生长的微生物抗冲击负荷的能力要差。
  ② pH值
  系统对氨氮的处理效果与出水pH值密切相关。进水氨氮为122mg/L左右时出水氨氮浓度与pH值的关系见图4。  当pH>8.1时出水氨氮才能降至10mg/L左右。同时发现进水氨氮浓度越大,在保证处理效果的前提下出水pH值会越高(见表2)。试验中还发现,pH值对硝化的影响是暂时的。表2 进、出水氨氮和出水pH值进水氨氮(mg/L)

文章搜索
本类热门
本站所列资源部分收集自网上,本站与内容的出处无关,内容版权皆属原作者所有,如果你认为侵犯了您的版权,请通知我们,我们立即删除.